VKAI: Vanne à boule d'arrêt 2 voies avec filetage intérieur, **PN 40**

Votre atout en matière d'efficacité énergétique

Un arrêt précis avec un faible risque de fuite : c'est ça, l'efficacité

Caractéristiques

- · Vanne à boule d'arrêt 2 voies pour une utilisation dans des circuits fermés d'installations CVC
- En combinaison avec les servomoteurs AKM 105(S), 115(S), 115SA et AKF 112, 113(S) comme appareil de coupure et comme appareil de réglage pour les régulations 2 points
- Fermeture rapide en six secondes avec le servomoteur de vanne AKM115SF152
- Faible couple de rotation grâce à une manchette logée sur joint torique
- Vanne à boule avec filetage intérieur selon ISO 7/1 Rp
- · Corps en fonte de laiton résistant à la dézincification
- Boule en laiton résistant à la dézincification, surface chromée et polie
- · Filtre et raccords à visser disponibles en tant qu'accessoires
- Qualité de l'eau selon VDI 2035

Caractéristiques techniques

Valeurs caractéristiques		
	Pression nominale	40 bar
	Taux de fuite	0,0001 x valeur K _{vs}
	Angle de rotation	90°
Conditions ambiantes		
Conditions ambiantes		
	Température de service ¹⁾	-10130 °C sans condensation
	Pression de service	40 bar (−10…50 °C) 35 bar (130 °C)

Aperçu des types						
Modèle	Diamètre nominal (DN)	Raccord ISO 7/1 Rp	Valeur K _{vs}	Poids		
VKAI015F300	DN 15	Rp 1/2"	15 m ³ /h	275 g		
VKAI020F300	DN 20	Rp ¾"	22 m ³ /h	370 g		
VKAI025F300	DN 25	Rp 1"	22 m ³ /h	456 g		
VKAI032F300	DN 32	Rp 11/4"	35 m ³ /h	700 g		
VKAI040F300	DN 40	Rp 1½"	68 m ³ /h	1120 g		
VKAI050F300	DN 50	Rp 2"	96 m ³ /h	1750 g		

Accessoires	
Modèle	Description
0510240001	Kit de montage pour vannes à boule VK^{**}/BK^{**} comme pièce de rechange et comme accessoire pour servomoteurs rotatifs ASF 112, 113 à partir de l'index B
0510240011	Pièce intermédiaire nécessaire pour des températures de fluide < 5 °C
0510420001	Pièce intermédiaire nécessaire pour des températures de fluide > 100 °C
0560284015	Raccord à visser en laiton, joint plat, filetage intérieur/extérieur pour DN 15
0560284020	Raccord à visser en laiton, joint plat, filetage intérieur/extérieur pour DN 20
0560284025	Raccord à visser en laiton, joint plat, filetage intérieur/extérieur pour DN 25
0560284032	Raccord à visser en laiton, joint plat, filetage intérieur/extérieur pour DN 32
0560284040	Raccord à visser en laiton, joint plat, filetage intérieur/extérieur pour DN 40
0560284050	Raccord à visser en laiton, joint plat, filetage intérieur/extérieur pour DN 50
0560332015	Filtre en cuivre rouge (bronze), -10150 °C, taille de maille 0,5 mm, DN 15
0560332020	Collecteur d'impuretés en bronze, -10150 °C, largeur de maille 0,8 mm, DN 20
0560332025	Filtre en cuivre rouge (bronze), -10150 °C, taille de maille 0,8 mm, DN 25
0560332032	Collecteur d'impuretés en bronze, –10150 °C, largeur de maille 0,8 mm, DN 32

Pour des températures de service inférieures à 5 °C ou supérieures à 100 °C, il faut utiliser les accessoires correspondants.

VKAI040F300

 \bowtie

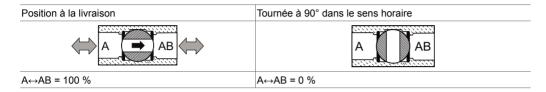
Modèle	Description
0560332040	Collecteur d'impuretés en bronze, -10150 °C, largeur de maille 0,8 mm, DN 40
0560332050	Collecteur d'impuretés en bronze, -10150 °C, largeur de maille 0,8 mm, DN 50

Combinaison VKAI et servomoteurs électriques

- Prestation de garantie: les caractéristiques techniques et différences de pression indiquées ne sont applicables que lorsque les pièces sont utilisées en combinaison avec des servomoteurs SAUTER. L'utilisation de servomoteurs d'autres fournisseurs annulera toute prestation de garantie.
- *i* Définition pour △p_{max}: perte de pression max. adm. en mode de régulation, à laquelle le servomoteur peut encore ouvrir et fermer la vanne à boule de façon sûre.

Différences de pression

Servomoteur	AKM105F100 AKM105F120	AKM105F122	AKM115F120	AKM115F122	
Couple de rota- tion	4 Nm	4 Nm	8 Nm	8 Nm	
Signal de com- mande	2/3 pt. 2/3 pt. 2/3 pt.		2/3 pt.		
Temps de course	30/120 s	30/120 s	120 s	120 s	
Tension de servi- ce	230 VCA	24 VCA	230 VCA	24 VCA	
	∆p _{max} [bar]	∆p _{max} [bar]	∆p _{max} [bar]	∆p _{max} [bar]	
VKAI015F300 VKAI020F300 VKAI025F300	1,8	1,8	3,5	3,5	
VKAI032F300 VKAI040F300 VKAI050F300	1,2	1,2 1,2 2,4		2,4	


Servomoteur	AKM105SF132	AKM115SF132	AKM115SAF232	AKM115SF152
Couple de rota- tion	4 Nm	8 Nm	8 Nm	7 Nm
Signal de com- mande	2/3 pt., 010 V	2/3 pt., 010 V	010 V, BACnet MS/TP	2/3 pt., 010 V, 420 mA
Temps de course	35/60/120 s	35/60/120 s	35/60/120 s	6 s
Tension de servi- ce	24 VCA/CC	24 VCA/CC	24 VCA/CC	24 VCA/CC
	∆p _{max} [bar]	∆p _{max} [bar]	∆p _{max} [bar]	∆p _{max} [bar]
VKAI015F300 VKAI020F300 VKAI025F300	1,8	3,5	3,5	3,5
VKAI032F300 VKAI040F300 VKAI050F300	Al040F300 1,2 2,4 2,4		2,4	
_	1	I	1	

Servomoteur	AKF112F120		AKF112F122		AKF113F122		AKF113SF122	
Couple de rota- tion	7 Nm		7 Nm		7 Nm		7 Nm	
Signal de com- mande	2 pt.		2 pt.		3 pt.		010 V	
Temps de course	90 s		90 s		90 s		90 s	
Tension de servi- ce	230 VCA		24 VCA/CC		24 VCA/CC		24 VCA/CC	
	Δp _{max} [bar]	∆p _s [bar]	Δp _{max} [bar]	∆p _s [bar]	Δp _{max} [bar]	Δp _s [bar]	Δp _{max} [bar]	∆p _s [bar]
VKAI015F300 VKAI020F300 VKAI025F300	3,5	5,4	3,5	5,4	3,5	5,4	3,5	5,4

Servomoteur	AKF112F1	20	AKF112F1	22	AKF113F1	22	AKF113SF	122
VKAI032F300 VKAI040F300 VKAI050F300	2,4	5,4	2,4	5,4	2,4	5,4	2,4	5,4
_								

Description du fonctionnement

Un servomoteur électrique commande la vanne à boule d'arrêt 2 voies d'une position à l'autre. La fonction de fermeture peut être réalisée avec les servomoteurs AKM 105, 115(S) et 115SA ainsi qu'avec les servomoteurs de vanne avec rappel par ressort AKF 112 et 113(S).

Les vannes à boule d'arrêt 2 voies se distinguent par une fiabilité et une précision élevées et contribuent de manière décisive à une régulation respectueuse de l'environnement. Elles satisfont à des exigences élevées telles que la fonction de fermeture rapide, la maîtrise de pressions différentielles, la régulation de la température de fluide, la réalisation de la fonction de fermeture, et tout cela de manière silencieuse.

Le couplage de la tige de la vanne à boule à l'entraînement d'axe du servomoteur s'effectue automatiquement. L'étanchéité de la boule est assurée par les manchettes en PTFE insérées dans le corps. Un joint torique en EPDM est inséré derrière ces deux manchettes. Ces joints toriques permettent à la boule et aux deux manchettes de légèrement se déplacer sur l'axe, ce qui augmente l'étanchéité et réduit les couples de rotation.

L'étanchéité de la tige de la vanne est assurée par 2 joints toriques.

Utilisation conforme

L'utilisation de ce produit est exclusivement autorisée dans les installations CVC des bâtiments à des fins de commande et de régulation. Toute autre application nécessite l'accord préalable du fabricant. Il convient de respecter le paragraphe « Description du fonctionnement » ainsi que toutes les prescriptions relatives au produit figurant dans cette fiche technique.

Les modifications ou transformations du produit ne sont pas autorisées.

Utilisation non conforme

La vanne à boule d'arrêt VKAI n'est pas homologuée pour l'eau potable. Le produit n'est pas conçu pour une utilisation dans des atmosphères explosibles.

Remarque conformément à la California Proposition 65

Le produit contient du plomb. Pour la mise sur le marché en Amérique du Nord, les avertissements correspondants doivent être apposés sur le produit ou sur l'emballage.

Remarques concernant l'étude de projet et le montage

Les vannes à boule d'arrêt 2 voies sont à combiner à des servomoteurs rotatifs avec ou sans rappel par ressort. Le servomoteur se place directement sur la vanne à boule et se fixe avec un connecteur à baïonnette. La connexion de l'axe moteur avec la tige de la vanne s'effectue automatiquement. À cette fin, l'axe de la vanne à boule doit se trouver dans une position intermédiaire. Lors de la première mise en service de l'installation, le servomoteur SUT se met en position de fin de course et les deux appareils se connectent automatiquement. L'angle de rotation de la vanne à boule est également détecté par le servomoteur. Aucun autre réglage n'est requis. Pour éviter un blocage de la vanne à boule dans les positions de fin de course, le servomoteur SUT effectuera une rotation d'env. 30° si le signal de positionnement n'a pas été modifié pendant trois jours dans les positions de fin de

Afin d'assurer la rétention des impuretés dans l'eau (boulettes de soudure, particules de rouille, etc.) et d'éviter que la manchette en PTFE ne soit endommagée, il est recommandé de monter des filtres, p. ex. par étage ou par colonne. Pour les filtres, voir les accessoires (tenir compte de l'utilisation et de la plage de température en fonction du type). La directive VDI 2035 définit les exigences relatives à la qualité de l'eau.

Toutes les vannes à boule ne doivent être utilisées qu'en circuits fermés. Dans les circuits ouverts, un taux d'oxygène trop élevé peut détruire les vannes à boule. Afin d'éviter cela, il faut utiliser un agent de conditionnement pour lier l'oxygène et déterminer sa compatibilité en termes de corrosion auprès du fabricant de la solution. La liste des matériaux indiquée plus bas peut être utilisée à cette fin.

La robinetterie est généralement isolée dans les installations. Il faut cependant veiller à ce que la bride pour le logement du servomoteur ne soit pas isolée.

Afin qu'aucun bruit d'écoulement ne soit perceptible dans les pièces silencieuses, la différence de pression au niveau de la vanne à boule ne doit pas dépasser 50 % des valeurs indiquées.

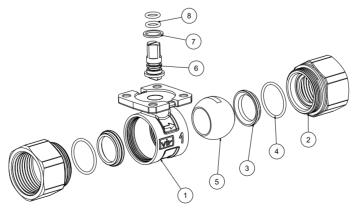
La manivelle est fixée aux servomoteurs AKM. Pour actionner cette manivelle, il faut pousser le bouton de réglage manuel du servomoteur vers le bas. Le servomoteur reste inerte jusqu'à ce que ce bouton soit remis en position haute. Un carré est également présent au niveau de la manivelle, il est adapté au carré de la tige de la vanne à boule.

Caractéristiques techniques complémentaires

Données de pression et de température	EN 764, EN 1333
Valeurs caractéristiques d'écoulement	EN 60534 (page 3)
Manuel technique « Appareils de réglage »	7000477001
Valeurs caractéristiques, instructions d'installation, régulation, généralités	Normes EN, DIN et AD, règles TRD et prescriptions OLAA en vigueur
Conformité CE DESP 2014/68/UE	Groupe de fluide II, pas de marquage CE selon DESP, art. 4.3
Conformité UKCA: Pressure Equipment (Safety) Regulations 2016	Groupe de fluide II, pas de marquage UKCA selon PE(S)R, art. 8(3)

Utilisation avec de l'eau

En cas d'utilisation d'eau mélangée avec du glycol ou un inhibiteur, il faut, pour des raisons de sécurité, s'assurer de la compatibilité des matériaux et des garnitures d'étanchéité présents dans la vanne à boule auprès du fabricant. La liste des matériaux indiquée dans la Déclaration matériaux et environnement MD 56.096 peut être utilisée à cette fin. Nous recommandons, en cas d'utilisation de glycol, de choisir une concentration comprise entre 20 % et 50 %.


Position de montage

L'appareil de réglage peut être monté dans une position quelconque. Toutefois, la position de montage suspendue n'est pas recommandée. Veillez à ce que des substances telles que condensat ou gouttes d'eau, etc. ne pénètrent pas dans le servomoteur.

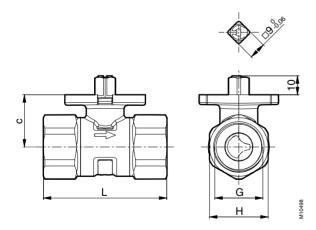
Informations complémentaires concernant le modèle

Corps de la vanne à boule en laiton pressé résistant à la dézincification (EN 12165) avec filetage intérieur cylindrique selon ISO 7/1 Rp. Joint de la tige à double joint torique en éthylène-propylène.

Numéros de matériau selon DIN

N°	Composant	N° de matériau DIN	Désignation DIN
(1)	Corps de la vanne à boule	CW602N	CuZn36Pb2As
(2)	Tubulure de connexion	CW602N	CuZn36Pb2As
(3)	Manchette	PTFE	_
(4)	Joint torique	EPDM	_
(5)	Boule, polie, chromée	CW602N	CuZn36Pb2As
(6)	Axe	CW602N	CuZn36Pb2As
(7)	Bague de friction	PTFE/bronze/MoS2	_
(8)	Joint torique	EPDM	_

Définition des différences de pression

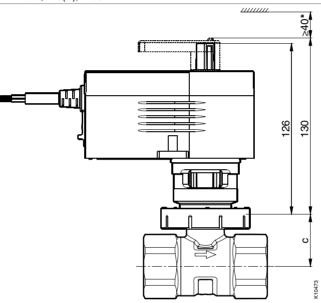

- Pression différentielle maximale admissible sur la vanne pour chaque position de la course, limitée par le Δp_{V} : niveau sonore et l'érosion. Cette valeur caractéristique caractérise la vanne comme élément conducteur spécifiquement dans son comportement hydraulique. Le contrôle de la cavitation, de l'érosion et du bruit en résultant permet d'améliorer aussi bien la durée de vie que l'état de fonctionnement.
- Δ**p**max: Pression différentielle maximale admissible sur la vanne, pour laquelle le servomoteur peut encore ouvrir et fermer la vanne de façon sûre. Sont prises en compte : la pression statique et les influences des flux. Cette valeur garantit un mouvement de la course et une étanchéité sans problème. La valeur ∆p_V de la vanne n'est jamais dépassée.
- Pression différentielle maximale admissible sur la vanne en cas de défaut (p. ex. absence de tension, Δp_s : pression et température excessives, rupture de tuyauterie) pour laquelle le servomoteur peut fermer la vanne de manière étanche et, le cas échéant, maintenir toute la pression de service contre la pression atmosphérique. Étant donné qu'il s'agit ici d'une fonction de sécurité avec un mouvement rapide de la course, Δp_s peut être supérieure à Δp_{max} ou Δp_v . Les interférences des flux survenant ici passeront rapidement. Ils sont d'une importance mineure pour ce mode de fonctionnement. Pour les vannes 3 voies, les valeurs ne s'appliquent qu'à la voie de régulation.
- Δp_{stat} : Pression de la conduite derrière la vanne. Elle correspond essentiellement à la pression de repos lorsque la pompe est désactivée, générée p. ex. par le niveau du fluide de l'installation, l'accroissement de pression par le réservoir de pression ou la pression de la vapeur. Pour les vannes qui ferment avec la pression, il faut utiliser pour cela l'addition de la pression statique et de la pression de la pompe.

Élimination

Lors de l'élimination, il faut respecter le cadre juridique local actuellement en vigueur.

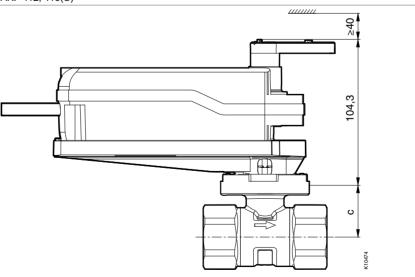
Vous trouverez des informations complémentaires concernant les matériaux dans la « Déclaration matériaux et environnement » relative à ce produit.

Plan d'encombrement


DN	c (mm)	G (pouce)	L (mm)	H (mm)
15	28	Rp 1/2	62	26
20	31	Rp ¾	67	31
25	31	Rp 1	77	39
32	35	Rp 1¼	88	48

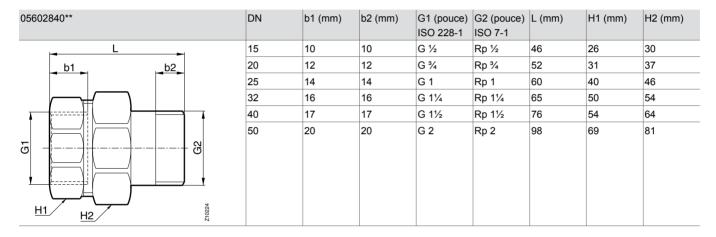
DN	c (mm)	G (pouce)	L (mm)	H (mm)
40	40	Rp 1½	102	55
50	53	Rp 2	117	67

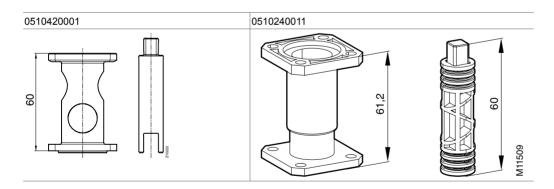
Combinaison


- *i* Toutes les mesures sont exprimées en millimètres.
- i Dimension c, voir tableau ci-dessus.

AKM 105, 115(S), 115SA²⁾

*) avec contact auxiliaire inverseur 0510480001 ou 0510480002 : ≥ 72 mm


AKF 112, 113(S)


²⁾ Tenir compte de la longueur de l'AKM 115SA (voir PDS 53.100)

Accessoires

05603320**		DN	b (mm)	c (mm)	G (pouce) ISO 228-1	L (mm)	H (mm)
b	1201Z	15	12	38	G ½	54	27
		20	15	43	G ¾	67	34
		25	16	53	G 1	79	41
		32	17	64	G 1¼	98	51
		40	18	70	G 1½	106	57
		50	20	85	G 2	122	69

Toutes les mesures sont exprimées en millimètres.

